TCGA学习笔记5-差异表达分析 发表于 2020-06-28 | 分类于 生物信息 | | 热度 °C 前面,我们已经对KIRC的611个CASE的表达数据进行了预处理,现在,我们可以开始进行基因的差异表达分析了。 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091> library(DESeq2)> d.des <- DESeqDataSetFromMatrix(data_select,+ colData = colData,+ design = ~group)> View(d.des)> res <- DESeq(d.des)estimating size factorsestimating dispersionsgene-wise dispersion estimatesmean-dispersion relationshipfinal dispersion estimatesfitting model and testing-- replacing outliers and refitting for 795 genes-- DESeq argument 'minReplicatesForReplace' = 7 -- original counts are preserved in counts(dds)estimating dispersionsfitting model and testing> result <- results(res)> class(result)[1] "DESeqResults"attr(,"package")[1] "DESeq2"> dim(result)[1] 18129 6> head(result)log2 fold change (MLE): group cancer vs normal Wald test p-value: group cancer vs normal DataFrame with 6 rows and 6 columns baseMean log2FoldChange lfcSE <numeric> <numeric> <numeric>ENSG00000000419 1451.58517917849 -0.0533634770734555 0.0523193279028319ENSG00000000457 758.009368176777 -0.360582717778673 0.0418677088475957ENSG00000000460 221.763750558644 0.61271651131726 0.0607242024231328ENSG00000000938 1056.54189255002 1.50798734334441 0.0999113699084657ENSG00000000971 5355.66857772629 0.701185856702199 0.172116557494952ENSG00000001036 4735.26426651376 0.0468730754150524 0.0584416346104715 stat pvalue padj <numeric> <numeric> <numeric>ENSG00000000419 -1.01995723592938 0.307748742642885 0.339965691022659ENSG00000000457 -8.61243014494163 7.1527882737753e-18 2.24580704217652e-17ENSG00000000460 10.0901532974906 6.10740651462378e-24 2.50173271685147e-23ENSG00000000938 15.0932505952622 1.79382718013598e-51 2.14797179317603e-50ENSG00000000971 4.07390123825107 4.62320932058293e-05 7.25789416114027e-05ENSG00000001036 0.802049356207667 0.422524408432647 0.45690098422162# 上面生成的result,就是这18129个基因的表达数据经差异分析后的结果,下面需要进一步的筛选> result_select <- result[result$pvalue<0.05&abs(result$log2FoldChange)>1,] # 筛选pvalue<0.05且FoldChange>2的基因> class(result_select)[1] "DESeqResults"attr(,"package")[1] "DESeq2"> dim(result_select)[1] 4913 6 # 筛选之后,基因数目从18129个减少至4913个> head(result_select)log2 fold change (MLE): group cancer vs normal Wald test p-value: group cancer vs normal DataFrame with 6 rows and 6 columns baseMean log2FoldChange lfcSE stat <numeric> <numeric> <numeric> <numeric>ENSG00000000938 1056.54189255002 1.50798734334441 0.0999113699084657 15.0932505952622ENSG00000001617 6403.79587078303 1.13804574850297 0.0897072677370336 12.6862157014861ENSG00000001630 218.029634030269 -1.15446295077517 0.120053363145966 -9.61624831260688ENSG00000002586 9712.04932748132 1.26513626330331 0.0853396109411807 14.8247249940627ENSG00000002746 240.436190572231 -3.72546669707377 0.224130353161834 -16.6218749246506ENSG00000002933 29346.9573200702 1.27343989833302 0.125910512841406 10.1138488724688 pvalue padj <numeric> <numeric>ENSG00000000938 1.79382718013598e-51 2.14797179317603e-50ENSG00000001617 7.05112262109708e-37 4.97005451002601e-36ENSG00000001630 6.82760868085803e-22 2.56374726129402e-21ENSG00000002586 1.01394301829956e-49 1.13889547575916e-48ENSG00000002746 4.83951527252971e-62 8.09368748853239e-61ENSG00000002933 4.7962181780376e-24 1.97615089431008e-23# 为了作图方便,可以进一步计算出上调与下调的基因> result_up <- result[result$pvalue<0.05&result$log2FoldChange>1,]> dim(result_up)[1] 3432 6 # 上调的基因有3432个> result_down <- result[result$pvalue<0.05&result$log2FoldChange< -1,]> dim(result_down)[1] 1481 6 # 下调的基因有1481个# 下面开始作火山图plot(result$log2FoldChange,-log10(result$pvalue),xlab="Log2FoldChange",ylab="-Log10(pvalue)",pch=16,cex=0.6)points(result_up$log2FoldChange,-log10(result_up$pvalue),col="red",pch=16,cex=0.6)points(result_down$log2FoldChange,-log10(result_down$pvalue),col="blue",pch=16,cex=0.6)abline(v=c(-1,1),col="#636363",lwd=2,lty=2)abline(h=1.3,col="#636363",lwd=2,lty=2)text(-7.5,260,"n=1481")text(7.5,260,"n=3432") 本文作者:括囊无誉 本文链接: TCGA/TCGA5Diff/ 版权声明: 本博客所有文章均为原创作品,转载请注明出处! ------ 本文结束 ------ 坚持原创文章分享,您的支持将鼓励我继续创作! Donate WeChat Pay