TCGA学习笔记13-对所有差异表达基因进行生存分析

前面,我们以padj或FoldChange为依据筛选了TOP10基因,并进行了生存分析,但效果并不理想,原因很简单,因为不论是P值还是变化倍数,其实都与病例生存时间没有必然关联。这次,我们来对所有差异表达基因批量进行生存分析,看有多少基因影响病例生存,并且找找规律。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
> dim(result_select_annot) # 注释后的4863个基因
[1] 4863 8
> head(result_select_annot)
ensembl_gene_id baseMean log2FoldChange lfcSE stat
1 ENSG00000000938 1056.5419 1.507987 0.09991137 15.093251
2 ENSG00000001617 6403.7959 1.138046 0.08970727 12.686216
3 ENSG00000001630 218.0296 -1.154463 0.12005336 -9.616248
4 ENSG00000002586 9712.0493 1.265136 0.08533961 14.824725
5 ENSG00000002746 240.4362 -3.725467 0.22413035 -16.621875
6 ENSG00000002933 29346.9573 1.273440 0.12591051 10.113849
pvalue padj hgnc_symbol
1 1.793827e-51 2.147972e-50 FGR
2 7.051123e-37 4.970055e-36 SEMA3F
3 6.827609e-22 2.563747e-21 CYP51A1
4 1.013943e-49 1.138895e-48 CD99
5 4.839515e-62 8.093687e-61 HECW1
6 4.796218e-24 1.976151e-23 TMEM176A

> annot_symbol <- result_select_annot$hgnc_symbol
> length(annot_symbol)
[1] 4863
> annot_id <- result_select_annot$ensembl_gene_id
> length(annot_id)
[1] 4863
> annot_data <- data_select[match(result_select_annot$ensembl_gene_id,rownames(data_select)),]
> colnames(annot_data) <- substr(colnames(annot_data),1,15)
> head(annot_data)[,1:3]
TCGA-CZ-5465-01 TCGA-BP-4355-01 TCGA-CZ-5451-01
ENSG00000000938 899 1211 1100
ENSG00000001617 16862 10888 9299
ENSG00000001630 310 77 305
ENSG00000002586 10729 8611 7618
ENSG00000002746 7 37 7
ENSG00000002933 60355 29448 47857
> dim(annot_data)
[1] 4863 611 # 数据准备就绪

> kidney_clinic$newID <- gsub("\\_diagnosis","\\-01",kidney_clinic$id)
> dim(kidney_clinic)
[1] 530 14
> head(kidney_clinic)
id classification_of_tumor tumor_stage gender
1 TCGA-CZ-5986_diagnosis not reported stage i male
2 TCGA-CZ-4858_diagnosis not reported stage ii male
3 TCGA-B8-5551_diagnosis not reported stage i female
4 TCGA-B0-4817_diagnosis not reported stage iii male
5 TCGA-BP-4325_diagnosis not reported stage i female
6 TCGA-B0-4698_diagnosis not reported stage iv male
year_of_birth year_of_death year_of_diagnosis days_to_death age
1 1945 not reported 2006 not reported 61
2 1966 not reported 2005 2105 39
3 1945 not reported 2010 not reported 65
4 1921 2004 2002 1019 81
5 1937 not reported 2001 not reported 64
6 1928 2003 2003 42 75
deadORlive race alcohol years_smoked
1 Alive white Not Reported not reported
2 Dead white Not Reported not reported
3 Alive black or african american Not Reported not reported
4 Dead white Not Reported not reported
5 Alive white Not Reported not reported
6 Dead white Not Reported not reported
newID
1 TCGA-CZ-5986-01
2 TCGA-CZ-4858-01
3 TCGA-B8-5551-01
4 TCGA-B0-4817-01
5 TCGA-BP-4325-01
6 TCGA-B0-4698-01
> km_plot <- apply(annot_data,1,function(x){ifelse(x>median(x),"up","down")})
> dim(km_plot)
[1] 611 4863
> head(km_plot)[,1:3]
ENSG00000000938 ENSG00000001617 ENSG00000001630
TCGA-CZ-5465-01 "down" "up" "up"
TCGA-BP-4355-01 "up" "up" "down"
TCGA-CZ-5451-01 "up" "up" "up"
TCGA-B0-5081-01 "up" "up" "down"
TCGA-CZ-5454-11 "down" "up" "up"
TCGA-B0-5697-01 "up" "down" "down"
> km_plot_cancer <- km_plot[grepl("TCGA\\S{9}01",rownames(km_plot)),]
> dim(km_plot_cancer)
[1] 538 4863
> head(km_plot_cancer)[,1:3]
ENSG00000000938 ENSG00000001617 ENSG00000001630
TCGA-CZ-5465-01 "down" "up" "up"
TCGA-BP-4355-01 "up" "up" "down"
TCGA-CZ-5451-01 "up" "up" "up"
TCGA-B0-5081-01 "up" "up" "down"
TCGA-B0-5697-01 "up" "down" "down"
TCGA-A3-A8OV-01 "up" "down" "up"
> kidney_clinic_km <- kidney_clinic[match(rownames(km_plot_cancer),kidney_clinic$newID),]
> dim(kidney_clinic_km)
[1] 538 14
> head(kidney_clinic_km)
id classification_of_tumor tumor_stage gender
274 TCGA-CZ-5465_diagnosis not reported stage iii female
358 TCGA-BP-4355_diagnosis not reported stage iii female
517 TCGA-CZ-5451_diagnosis not reported stage ii male
119 TCGA-B0-5081_diagnosis not reported stage iii female
201 TCGA-B0-5697_diagnosis not reported stage i male
484 TCGA-A3-A8OV_diagnosis not reported stage i male
year_of_birth year_of_death year_of_diagnosis days_to_death age
274 1931 not reported 2007 2564 76
358 1949 2010 2008 953 59
517 1932 not reported 2006 not reported 74
119 1926 2005 2005 362 79
201 1957 not reported 2007 not reported 50
484 1936 not reported 2011 not reported 75
deadORlive race alcohol years_smoked
274 Dead not reported Not Reported not reported
358 Dead white Not Reported not reported
517 Alive white Not Reported not reported
119 Dead white Not Reported not reported
201 Alive white Not Reported not reported
484 Alive black or african american Not Reported 65
newID
274 TCGA-CZ-5465-01
358 TCGA-BP-4355-01
517 TCGA-CZ-5451-01
119 TCGA-B0-5081-01
201 TCGA-B0-5697-01
484 TCGA-A3-A8OV-01
> daysToDeath <- as.numeric(as.character(kidney_clinic_km$days_to_death))
> daysToDeath
[1] 2564 953 NA 362 NA NA 62 1493 51 NA NA NA 1588
[14] NA 885 2227 137 NA NA 1432 NA NA NA NA NA NA
[27] 1657 NA 18 NA 1964 NA 109 NA 1661 NA NA NA NA
[40] NA NA NA NA 1315 1404 562 445 NA NA NA NA 1238
[53] 182 1912 NA NA NA NA 2454 344 NA 1913 1111 NA 1980
[66] NA 600 1003 NA NA NA NA 2105 1371 334 NA 1337 NA
[79] NA NA NA NA NA NA 727 NA NA 2256 NA NA NA
[92] 782 NA NA NA NA NA NA NA 1625 NA NA NA NA
[105] NA NA 768 NA NA NA NA NA 563 NA 2145 NA NA
[118] NA 561 NA NA NA NA NA NA NA NA 1200 NA NA
[131] NA NA NA NA NA NA 1317 NA NA NA NA NA NA
[144] 329 NA NA NA NA 242 NA NA 646 NA NA NA NA
[157] 683 587 952 0 NA 320 1092 NA NA 68 510 NA NA
[170] 245 2 NA 793 NA NA NA 2601 NA NA NA 1714 NA
[183] NA NA 1230 1170 2386 NA 571 883 1912 NA NA NA 1986
[196] NA 1091 NA NA NA NA NA 1417 NA NA 65 NA NA
[209] NA NA NA NA 1378 NA NA NA NA NA NA NA NA
[222] NA NA 679 866 NA NA NA NA NA 330 NA NA 885
[235] NA 946 NA NA 375 NA NA NA 1133 NA NA 561 NA
[248] 431 NA 2764 NA NA NA NA 1696 NA 42 NA 59 0
[261] NA NA NA NA NA 1034 1270 1200 2241 333 NA NA NA
[274] NA 342 NA 722 NA NA 1075 NA NA NA NA 709 NA
[287] NA NA NA NA NA NA NA NA NA NA NA NA 164
[300] NA NA NA NA NA 701 69 NA NA 574 106 NA NA
[313] NA NA 475 1019 NA NA NA 162 845 NA NA 552 139
[326] NA NA NA NA 1589 NA 1045 735 NA NA NA NA NA
[339] NA NA 1972 459 NA 2299 NA NA NA 819 1463 NA NA
[352] 1724 NA NA 313 NA NA NA 183 NA NA NA NA NA
[365] NA NA 1626 822 NA 206 932 1097 NA NA NA NA NA
[378] NA NA NA 166 478 NA 1584 NA NA NA NA 480 NA
[391] NA 311 NA NA NA NA 202 NA 927 1343 1590 454 NA
[404] 834 NA NA NA 2090 1598 NA 1639 878 992 NA NA NA
[417] NA 43 NA 2419 NA NA NA NA 1121 NA NA NA NA
[430] 2343 485 110 NA NA 313 204 NA NA NA 238 NA NA
[443] NA NA NA NA 480 NA 168 NA 73 NA NA 101 NA
[456] NA NA NA 446 3615 NA 645 NA 1567 NA 3554 NA NA
[469] NA NA NA 139 NA NA NA 841 NA NA 336 NA NA
[482] NA 99 NA NA NA NA 637 NA NA NA NA 1111 NA
[495] NA NA 77 770 NA NA NA NA 222 NA NA NA NA
[508] 41 NA NA NA NA NA NA NA NA 1610 224 NA 1191
[521] NA 93 NA NA 307 NA 211 NA NA 1625 NA 578 NA
[534] NA NA NA NA NA
> daysToDeathN <- ifelse(is.na(daysToDeath),max(na.omit(daysToDeath)),daysToDeath)
> daysToDeathN
[1] 2564 953 3615 362 3615 3615 62 1493 51 3615 3615 3615 1588
[14] 3615 885 2227 137 3615 3615 1432 3615 3615 3615 3615 3615 3615
[27] 1657 3615 18 3615 1964 3615 109 3615 1661 3615 3615 3615 3615
[40] 3615 3615 3615 3615 1315 1404 562 445 3615 3615 3615 3615 1238
[53] 182 1912 3615 3615 3615 3615 2454 344 3615 1913 1111 3615 1980
[66] 3615 600 1003 3615 3615 3615 3615 2105 1371 334 3615 1337 3615
[79] 3615 3615 3615 3615 3615 3615 727 3615 3615 2256 3615 3615 3615
[92] 782 3615 3615 3615 3615 3615 3615 3615 1625 3615 3615 3615 3615
[105] 3615 3615 768 3615 3615 3615 3615 3615 563 3615 2145 3615 3615
[118] 3615 561 3615 3615 3615 3615 3615 3615 3615 3615 1200 3615 3615
[131] 3615 3615 3615 3615 3615 3615 1317 3615 3615 3615 3615 3615 3615
[144] 329 3615 3615 3615 3615 242 3615 3615 646 3615 3615 3615 3615
[157] 683 587 952 0 3615 320 1092 3615 3615 68 510 3615 3615
[170] 245 2 3615 793 3615 3615 3615 2601 3615 3615 3615 1714 3615
[183] 3615 3615 1230 1170 2386 3615 571 883 1912 3615 3615 3615 1986
[196] 3615 1091 3615 3615 3615 3615 3615 1417 3615 3615 65 3615 3615
[209] 3615 3615 3615 3615 1378 3615 3615 3615 3615 3615 3615 3615 3615
[222] 3615 3615 679 866 3615 3615 3615 3615 3615 330 3615 3615 885
[235] 3615 946 3615 3615 375 3615 3615 3615 1133 3615 3615 561 3615
[248] 431 3615 2764 3615 3615 3615 3615 1696 3615 42 3615 59 0
[261] 3615 3615 3615 3615 3615 1034 1270 1200 2241 333 3615 3615 3615
[274] 3615 342 3615 722 3615 3615 1075 3615 3615 3615 3615 709 3615
[287] 3615 3615 3615 3615 3615 3615 3615 3615 3615 3615 3615 3615 164
[300] 3615 3615 3615 3615 3615 701 69 3615 3615 574 106 3615 3615
[313] 3615 3615 475 1019 3615 3615 3615 162 845 3615 3615 552 139
[326] 3615 3615 3615 3615 1589 3615 1045 735 3615 3615 3615 3615 3615
[339] 3615 3615 1972 459 3615 2299 3615 3615 3615 819 1463 3615 3615
[352] 1724 3615 3615 313 3615 3615 3615 183 3615 3615 3615 3615 3615
[365] 3615 3615 1626 822 3615 206 932 1097 3615 3615 3615 3615 3615
[378] 3615 3615 3615 166 478 3615 1584 3615 3615 3615 3615 480 3615
[391] 3615 311 3615 3615 3615 3615 202 3615 927 1343 1590 454 3615
[404] 834 3615 3615 3615 2090 1598 3615 1639 878 992 3615 3615 3615
[417] 3615 43 3615 2419 3615 3615 3615 3615 1121 3615 3615 3615 3615
[430] 2343 485 110 3615 3615 313 204 3615 3615 3615 238 3615 3615
[443] 3615 3615 3615 3615 480 3615 168 3615 73 3615 3615 101 3615
[456] 3615 3615 3615 446 3615 3615 645 3615 1567 3615 3554 3615 3615
[469] 3615 3615 3615 139 3615 3615 3615 841 3615 3615 336 3615 3615
[482] 3615 99 3615 3615 3615 3615 637 3615 3615 3615 3615 1111 3615
[495] 3615 3615 77 770 3615 3615 3615 3615 222 3615 3615 3615 3615
[508] 41 3615 3615 3615 3615 3615 3615 3615 3615 1610 224 3615 1191
[521] 3615 93 3615 3615 307 3615 211 3615 3615 1625 3615 578 3615
[534] 3615 3615 3615 3615 3615
> fit <- Surv(daysToDeathN,ifelse(kidney_clinic_km$deadORlive=="Dead",1,0)==1)
> p <- rep(0,length(annot_id)) # 定义变量p,放p value
> s <- rep(0,length(annot_id)) # 定义变量s,放surv,即生存预期
> for(i in 1:length(annot_id)){
+ m <- survdiff(fit~km_plot_cancer[,i])
+ p[i] <- 1 - pchisq(m$chisq, length(m$n) -1)
+ s[i] <- ifelse(m$obs[1]/m$n[[1]] > m$obs[2]/m$n[[2]],0,1) # 0=低表达生存预期差,高表达生存预期好;1=低表达生存预期好,高表达生存预期差;
+ }
> class(p)
[1] "numeric"
> length(p)
[1] 4863
> class(s)
[1] "numeric"
> length(s)
[1] 4863
> table(s)
s
0 1
2245 2618 # 大致各一半

> result_select_annot$survP <- p
> dim(result_select_annot)
[1] 4863 9 # 多出新的一列
> head(result_select_annot)
ensembl_gene_id baseMean log2FoldChange lfcSE stat
1 ENSG00000000938 1056.5419 1.507987 0.09991137 15.093251
2 ENSG00000001617 6403.7959 1.138046 0.08970727 12.686216
3 ENSG00000001630 218.0296 -1.154463 0.12005336 -9.616248
4 ENSG00000002586 9712.0493 1.265136 0.08533961 14.824725
5 ENSG00000002746 240.4362 -3.725467 0.22413035 -16.621875
6 ENSG00000002933 29346.9573 1.273440 0.12591051 10.113849
pvalue padj hgnc_symbol survP
1 1.793827e-51 2.147972e-50 FGR 9.088360e-01
2 7.051123e-37 4.970055e-36 SEMA3F 2.033993e-03
3 6.827609e-22 2.563747e-21 CYP51A1 1.373636e-05
4 1.013943e-49 1.138895e-48 CD99 3.377814e-01
5 4.839515e-62 8.093687e-61 HECW1 7.404867e-01
6 4.796218e-24 1.976151e-23 TMEM176A 7.017783e-01
> result_select_annot$surv <- s
> dim(result_select_annot)
[1] 4863 10 # 又多出一列
> head(result_select_annot)
ensembl_gene_id baseMean log2FoldChange lfcSE stat
1 ENSG00000000938 1056.5419 1.507987 0.09991137 15.093251
2 ENSG00000001617 6403.7959 1.138046 0.08970727 12.686216
3 ENSG00000001630 218.0296 -1.154463 0.12005336 -9.616248
4 ENSG00000002586 9712.0493 1.265136 0.08533961 14.824725
5 ENSG00000002746 240.4362 -3.725467 0.22413035 -16.621875
6 ENSG00000002933 29346.9573 1.273440 0.12591051 10.113849
pvalue padj hgnc_symbol survP surv
1 1.793827e-51 2.147972e-50 FGR 9.088360e-01 0
2 7.051123e-37 4.970055e-36 SEMA3F 2.033993e-03 0
3 6.827609e-22 2.563747e-21 CYP51A1 1.373636e-05 0
4 1.013943e-49 1.138895e-48 CD99 3.377814e-01 1
5 4.839515e-62 8.093687e-61 HECW1 7.404867e-01 0
6 4.796218e-24 1.976151e-23 TMEM176A 7.017783e-01 0
> result_survP <- result_select_annot[result_select_annot$survP < 0.001,] # 筛选survP<0.001的基因,共922个
> dim(result_survP)
[1] 922 9
> head(result_survP)
ensembl_gene_id baseMean log2FoldChange lfcSE stat
3 ENSG00000001630 218.0296 -1.154463 0.1200534 -9.616248
20 ENSG00000005108 2576.9645 -1.624881 0.1633055 -9.949951
36 ENSG00000007314 397.9782 1.635177 0.1774570 9.214498
47 ENSG00000008988 45747.5469 1.061020 0.0931570 11.389586
49 ENSG00000009765 462.9210 -4.288686 0.2380812 -18.013543
54 ENSG00000010319 2118.5841 -1.634110 0.1484228 -11.009836
pvalue padj hgnc_symbol survP surv
3 6.827609e-22 2.563747e-21 CYP51A1 1.373636e-05 0
20 2.523085e-23 1.004634e-22 THSD7A 2.232279e-04 0
36 3.127375e-20 1.092412e-19 SCN4A 3.566491e-05 0
47 4.712258e-30 2.505970e-29 RPS20 1.083688e-04 1
49 1.525459e-72 3.707111e-71 IYD 2.896293e-04 0
54 3.426265e-28 1.691118e-27 SEMA3G 4.535900e-08 0

最终筛选出来的这922个基因,符合FoldChange > 2 && pvalue < 0.001 && survP < 0.001,下面,我们给这些基因分个组,

1)HG,在肿瘤中表达上调,且高表达生存预期好;log2FoldChange > 1 && surv = 0
2)HB,在肿瘤中表达上调,且高表达生存预期坏,暂且认为是原癌基因;log2FoldChange > 1 && surv = 1
3)LG,在肿瘤中表达下调,且高表达生存预期好,暂且认为是抑癌基因;log2FoldChange < -1 && surv = 0
4)LB,在肿瘤中表达下调,且高表达生存预期坏;log2FoldChange < -1 && surv = 1

1
2
3
4
5
6
7
8
9
10
11
12
13
> result_survP_HG <- result_survP[result_survP$log2FoldChange > 1 & result_survP$surv == 0,]
> result_survP_HB <- result_survP[result_survP$log2FoldChange > 1 & result_survP$surv == 1,]
> result_survP_LG <- result_survP[result_survP$log2FoldChange < -1 & result_survP$surv == 0,]
> result_survP_LB <- result_survP[result_survP$log2FoldChange < -1 & result_survP$surv == 1,]

> dim(result_survP_HG)
[1] 141 10
> dim(result_survP_HB)
[1] 416 10
> dim(result_survP_LG)
[1] 314 10
> dim(result_survP_LB)
[1] 51 10

看一下这四个集合的基因

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
> result_survP_HG$hgnc_symbol
[1] "SCN4A" "NRXN3" "TLL1" "ATP11A"
[5] "VASH1" "ADCY2" "SCGN" "NRP1"
[9] "SLC5A1" "BMX" "FLT1" "RGCC"
[13] "GRB10" "PRUNE2" "DOCK8" "LIPA"
[17] "VWF" "SLC17A2" "HAVCR1" "HHLA2"
[21] "SLC1A4" "PCDH17" "TEX11" "IQSEC3"
[25] "TMEM131L" "PREX1" "COL21A1" "CD93"
[29] "MCF2L" "MASP1" "F2RL3" "FBXL16"
[33] "KDR" "ACLY" "PER2" "ETS1"
[37] "DYSF" "TM6SF1" "HECW2" "CLEC18B"
[41] "CDH13" "RGS5" "HMCN1" "RIT1"
[45] "MALL" "MARCHF4" "SLC10A6" "ARHGAP26"
[49] "GFOD1" "SLC17A4" "DIAPH2" "PLIN2"
[53] "CDKN2B" "ANO4" "PDK1" "PTPRR"
[57] "LURAP1L" "ENPP3" "PIEZO2" "SLC28A1"
[61] "FZD1" "TSPAN18" "GALNT14" "ABCG1"
[65] "ADGRL4" "SPATA18" "TGFA" "SPRY1"
[69] "TLR3" "TMEM200A" "SLC18A2" "BTNL9"
[73] "ARHGAP42" "GALR1" "KCNAB1" "DPY19L2P2"
[77] "PDGFD" "INSR" "CYSLTR1" "ARL10"
[81] "BNIP3" "CLEC14A" "" "SCN4B"
[85] "RIMKLA" "DNAJC22" "APOLD1" "EXOC3L1"
[89] "CDH4" "CDH5" "NLRP11" "P2RY8"
[93] "" "F8" "QRFPR" "ZNF395"
[97] "C3orf70" "SPRY4" "PEAK3" "LRRK2"
[101] "CTSE" "GIMAP5" "SLC22A4" "BNIP3P1"
[105] "AVPR1B" "TRIM15" "INSYN2B" "C17orf107"
[109] "" "" "LDHAP4" "ZNF812P"
[113] "NPY6R" "LINC01738" "UBTFL6" "PRKAR1B-AS2"
[117] "" "HS1BP3-IT1" "" ""
[121] "LDHAP3" "GGT8P" "LILRA4" "ACAD11"
[125] "VWFP1" "" "" ""
[129] "" "LINC01843" "SHANK3" "PTP4A2P2"
[133] "PABPC4L" "LINC02747" "SLC5A8" ""
[137] "" "PECAM1" "" ""
[141] ""
> result_survP_HB$hgnc_symbol
[1] "RPS20" "PLAUR" "DDX11" "TACC3"
[5] "SLC38A5" "SLC11A1" "DEF6" "TYMP"
[9] "RNASET2" "SH2D2A" "POU2F2" "RTN4R"
[13] "FOXP3" "CYBA" "YBX3" "COL11A1"
[17] "VMP1" "CHI3L2" "CACNB1" "CLEC2D"
[21] "TRIP13" "GSDMB" "PPP2R2C" "GTSE1"
[25] "ACTN2" "NDC80" "CXCL2" "RAD54L"
[29] "PPEF1" "ACHE" "TPX2" "BIRC5"
[33] "LAG3" "DTX2" "TF" "ORC6"
[37] "RGS17" "UNC13D" "HSD3B7" "DERL3"
[41] "OSM" "LGALS1" "CENPM" "HDAC10"
[45] "POLE2" "CDKN3" "MMP9" "MYBL2"
[49] "PABPC1L" "SLC17A9" "PTK6" "TRIB3"
[53] "PIM2" "TAZ" "TIMP1" "RRN3P2"
[57] "PYCARD" "AQP9" "IGDCC4" "PDGFRL"
[61] "KCNN4" "GRIN2D" "JAK3" "HAMP"
[65] "PBX4" "HOXA13" "NSUN5P2" "TFR2"
[69] "RAPGEFL1" "KAT2A" "CNTNAP1" "DLX4"
[73] "NEIL3" "HPX" "MDK" "TCIRG1"
[77] "CDCA3" "KIF20A" "STEAP3" "CENPA"
[81] "TPSG1" "KIAA1324" "OPRD1" "CDC20"
[85] "NEK2" "CCDC18" "DDX39A" "CENPK"
[89] "HJURP" "BATF3" "WFDC3" "TNFSF14"
[93] "RBCK1" "IGFLR1" "HCST" "IDUA"
[97] "PKMYT1" "CHTF18" "LRFN1" "CPA4"
[101] "ATP8B3" "FCHO1" "C1QL1" "THOC6"
[105] "PODNL1" "SERPINF1" "C1QTNF6" "FKBP11"
[109] "IL15RA" "SPOCD1" "CDCA8" "SLC43A3"
[113] "OASL" "TROAP" "SLC9A5" "CCM2"
[117] "LIMD2" "CD72" "SLCO5A1" "ITPKA"
[121] "CEP55" "ZNF365" "ADAMTS14" "INHBE"
[125] "GPR84" "MAP3K12" "BCL2A1" "PIF1"
[129] "TICRR" "PRELID3A" "ASGR1" "CARD14"
[133] "FKBP10" "EMP3" "SH3BGRL3" "KIF2C"
[137] "NUF2" "TMEM44" "DOK3" "NFKBIE"
[141] "MTFR2" "SLC25A37" "PRSS53" "ADAM8"
[145] "CCDC74B" "SPC25" "TRIM36" "SKA1"
[149] "GOLGA7B" "BATF" "BUB1B" "ZFHX2-AS1"
[153] "CDC25C" "DUSP23" "NBL1" "RUNX1"
[157] "C1R" "PPP1R35" "HK3" "SYCE2"
[161] "SPC24" "CCDC78" "TEDC2" "LBHD1"
[165] "CCDC74A" "DCST2" "TRIM46" "RPL22L1"
[169] "CXCL1" "UCN" "SPDYA" "PTTG1"
[173] "AGBL2" "PLEKHF1" "MSS51" "PKD1L2"
[177] "FAM86GP" "CATSPER2" "PCLAF" "PLK1"
[181] "MEI1" "PRRX2" "ENGASE" "TEPSIN"
[185] "VKORC1" "JSRP1" "CORO6" "TTYH1"
[189] "TRPV3" "CCDC88B" "REEP4" "THBS3"
[193] "NPIPB3" "RNASE2" "BUB1" "CHRNA5"
[197] "MZB1" "OSCAR" "ZNF692" "RRM2"
[201] "LRRC15" "CEBPB" "MZT2A" "SAA1"
[205] "NABP1" "CD7" "C1QTNF1" "IL20RB"
[209] "RIN1" "CNIH2" "UBE2C" "GOLGA8A"
[213] "CATSPER1" "B3GNTL1" "SPHK1" "CLK2"
[217] "C8G" "LRRN4CL" "CPNE7" "MSC"
[221] "RFLNA" "AURKB" "LBX2" "DNHD1"
[225] "TMEM86B" "MAP6D1" "ARL6IP4" "B4GALNT4"
[229] "KCNJ14" "FBXL6" "C1S" "CCNYL2"
[233] "PYCR1" "GPR19" "NPIPA1" "BMP8A"
[237] "CHEK2" "IQGAP3" "DUSP5P1" "STAC3"
[241] "IRF7" "PRAME" "KIF18B" "TNFRSF18"
[245] "PLEKHN1" "ISG15" "FANCA" "EIF4EBP1"
[249] "TPRG1" "RUFY4" "ZP3" "NPIPP1"
[253] "SLC4A5" "FAM78B" "SNHG17" "PDLIM7"
[257] "ADAM32" "RAD54B" "ELOVL2" "GOLGA6L9"
[261] "FCGR1B" "MMP17" "RYR2" "PLXNB3"
[265] "" "AGAP6" "LILRB3" "GABBR1"
[269] "SYCE1L" "MUC12" "DUXAP8" "IGKC"
[273] "IGLV1-47" "IGLV1-44" "IGLV3-19" "IGLC2"
[277] "IGLC3" "IGHG4" "IGHG2" "IGHA1"
[281] "IGHG1" "IGHG3" "CRYGS" "ASIC3"
[285] "MXD3" "RPLP1P6" "LAT" "RPL17P50"
[289] "PPM1N" "LTB4R" "NPEPL1" "IFI30"
[293] "PRELID1P1" "PAM16" "" "ZGLP1"
[297] "FADS3" "CYTOR" "TSSC2" ""
[301] "C5orf66" "ZMIZ1-AS1" "MIAT" "LINC00115"
[305] "" "" "SLC16A1-AS1" "LINC00511"
[309] "LTB" "" "MELTF-AS1" "DPY19L1P1"
[313] "" "" "CYP21A2" "SNHG15"
[317] "LINC02609" "YEATS2-AS1" "" ""
[321] "LINC01871" "KDM4A-AS1" "MAP3K2-DT" "PRKAR1B-AS1"
[325] "FOXD2-AS1" "PCDHGC5" "CFB" "NPIPB5"
[329] "APOBEC3D" "" "IGKV3-15" ""
[333] "" "" "LINC00926" "TNXA"
[337] "LUCAT1" "" "SRD5A3-AS1" "PVT1"
[341] "" "" "IGHGP" ""
[345] "IGLL5" "AGAP2-AS1" "" ""
[349] "KLRA1P" "PPP1R14B-AS1" "HP" ""
[353] "IFITM3P6" "LINC02328" "MC1R" "ZHX1-C8orf76"
[357] "" "" "LINC01355" "VPS9D1-AS1"
[361] "" "SMG1P7" "H2BC20P" ""
[365] "CORO7" "" "" ""
[369] "" "" "" ""
[373] "" "" "" ""
[377] "" "" "" ""
[381] "" "" "" ""
[385] "GTF2IP20" "" "" ""
[389] "" "" "" ""
[393] "" "EPOP" "" "NOL12"
[397] "LINC01138" "" "TBC1D3L" ""
[401] "" "" "" ""
[405] "" "" "" ""
[409] "" "" "" ""
[413] "" "" "" "HELLPAR"
> result_survP_LG$hgnc_symbol
[1] "CYP51A1" "THSD7A" "IYD" "SEMA3G" "CHDH"
[6] "SLC7A9" "NDUFS1" "USP2" "VPS13D" "KITLG"
[11] "NEDD4L" "FSTL4" "AP5M1" "SYNE2" "CYFIP2"
[16] "ZMYND12" "MPPED2" "FECH" "PTPN3" "RPS6KA6"
[21] "LNX1" "MPP5" "EVC" "FRY" "NTN4"
[26] "ACAT1" "FMO4" "NEBL" "CEACAM1" "FDFT1"
[31] "OPHN1" "MAGI3" "COL4A4" "CADPS2" "COBLL1"
[36] "TRPM3" "ABCB1" "L2HGDH" "PTPN4" "JPH4"
[41] "XYLB" "SMIM24" "ERMP1" "MIOX" "CDKL1"
[46] "DCAF11" "MCF2" "CAB39L" "VWA8" "TOX3"
[51] "CA2" "SH2D4A" "DHDH" "COBL" "TMEM245"
[56] "BAG1" "CPEB3" "PBLD" "TBC1D9" "TRIM2"
[61] "PPARGC1A" "AKAP3" "FRK" "NCOA7" "EPM2A"
[66] "SEMA5A" "NNT" "AGXT2" "CPEB4" "HYAL1"
[71] "ATP6V1A" "EPB41L5" "TACR1" "PLCL1" "PARD3B"
[76] "WLS" "AGMAT" "HAO2" "ACADM" "ABCD3"
[81] "IRF6" "TREH" "ECRG4" "BSPRY" "ALDH6A1"
[86] "GOT1" "TEK" "EPHX2" "PDZRN3" "CAT"
[91] "PLG" "PCK1" "SCGB1D2" "FLRT3" "PLEKHG3"
[96] "PODXL" "HOXD1" "HOXD3" "SYNE1" "SLC34A1"
[101] "NAPSA" "G6PC" "FMO5" "ZNF132" "DDC"
[106] "ENAM" "ANGPTL3" "MYH10" "KL" "BEX2"
[111] "GSTM3" "VAV3" "HMGCS2" "MYCN" "CLDN10"
[116] "FBXO21" "EDAR" "TBC1D4" "SUCLA2" "LMO7"
[121] "ALDOB" "BPHL" "SORL1" "PAQR5" "SEMA6D"
[126] "DBT" "ARHGAP24" "GPAT3" "FRAS1" "CDKL2"
[131] "SHROOM3" "HADH" "PELI2" "SLC27A2" "SLC14A1"
[136] "ERBB2" "CGN" "GDF7" "CTDSPL" "ALDH1L1"
[141] "SCD5" "USP53" "UGT3A1" "BHMT" "IQGAP2"
[146] "CRHBP" "SLC25A48" "MMUT" "CYP39A1" "MFHAS1"
[151] "AK3" "AUH" "ALAD" "SLC25A25" "CNNM2"
[156] "SLC5A12" "GLYAT" "SLC22A8" "TMEM25" "MPP7"
[161] "DLG2" "FREM2" "THRB" "ANK3" "NR3C2"
[166] "ASAP2" "SLC25A4" "GPD1L" "SLC16A12" "PANK1"
[171] "MARVELD2" "FRMD1" "KCNJ16" "PGM5" "SFXN2"
[176] "FUT6" "DHRS4" "KCNJ15" "PAFAH2" "WNT9B"
[181] "CPAMD8" "PTH1R" "MYL3" "CYP3A7" "NAPEPLD"
[186] "TMEM82" "AKR7A3" "CDS1" "PTPN13" "DNASE1L3"
[191] "RBM47" "EMCN" "HPGD" "ADGRV1" "TMEM174"
[196] "RAET1E" "FREM1" "MYORG" "FBP1" "SLC16A9"
[201] "CRYL1" "EML5" "NDRG2" "CCDC186" "OTOGL"
[206] "CLMN" "WDR72" "CDH16" "LDHD" "GLYATL1"
[211] "MTMR10" "CA4" "ACOX2" "GJB1" "PKHD1"
[216] "FUT3" "UGT2B7" "CLCN5" "GPHN" "GATM"
[221] "TLN2" "SUCLG2" "SLC22A13" "NUDT4" "JUP"
[226] "SLC25A30" "ZHX3" "SLC6A19" "MFSD4A" "PCCA"
[231] "TOM1L2" "KDF1" "MSRA" "HSD11B2" "GNG7"
[236] "RNF152" "GCNT4" "SHMT1" "GRAMD1C" ""
[241] "KLHDC7A" "TCAIM" "MTURN" "WDFY3-AS2" "PAQR7"
[246] "C11orf54" "SLC8A1" "ZNRF3" "LRRC55" "ST6GALNAC3"
[251] "PRKD1" "CCSER1" "LRRC19" "ROBO2" "HS6ST3"
[256] "PBX1" "SYN3" "SOWAHB" "PPARA" "AKR1C1"
[261] "TSPYL4" "TCL6" "MEIS3P2" "SHISA6" "TSPYL1"
[266] "KAZN" "ACADSB" "AJAP1" "MYO6" "SMIM10L2B"
[271] "OGDHL" "OCLN" "SLC22A12" "KIF13B" "SLC22A6"
[276] "HIBCH" "PEG3" "ARC" "LRBA" "ECI2"
[281] "MTOR" "BHLHB9" "SLC44A4" "ZNF204P" "CYS1"
[286] "SYNJ2BP" "B3GNT10" "TTC3P1" "ZNF844" "PSMG3-AS1"
[291] "LINC00271" "" "RAP2C-AS1" "" ""
[296] "RPL34-AS1" "" "MKLN1-AS" "SUCLG2-AS1" "LINC02027"
[301] "C1orf210" "" "" "" ""
[306] "" "" "" "DYNLL2" ""
[311] "" "" "" "PWAR5"
> result_survP_LB$hgnc_symbol
[1] "CLDN11" "GPRC5A" "GYG2" "STYK1" "BCAS1" "IGF2BP2"
[7] "SULT2B1" "EPB41L4B" "CAPS" "PTGDS" "DNAJC12" "VTN"
[13] "SLPI" "CHAC1" "PSAT1" "PPP1R1A" "KCNH3" "WNT10A"
[19] "TFAP2A" "CILP" "BMPR1B" "NECTIN4" "SUSD4" "ATP6V1C2"
[25] "SSC4D" "PLEKHG4B" "FAM167A" "PROM2" "PPM1J" "SIM2"
[31] "TLCD1" "BNIPL" "LIPH" "MELTF" "SHOC1" "SCNN1B"
[37] "PHYHIP" "LRRN2" "HOXB9" "CEL" "MUC13" "B3GNT8"
[43] "SMCO3" "WT1" "CLCNKA" "DNER" "SERPINA5" "L1CAM"
[49] "GEMIN8P4" "MRPS6" "TRNP1"

有了这个基因列表,后续可以进行富集分析或者GSEA分析。

  • 本文作者:括囊无誉
  • 本文链接: TCGA/TCGA13Survival/
  • 版权声明: 本博客所有文章均为原创作品,转载请注明出处!
------ 本文结束 ------
坚持原创文章分享,您的支持将鼓励我继续创作!