参考文献:Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown
一、下载数据并解压
1 | wget ftp://ftp.ccb.jhu.edu/pub/RNAseq_protocol/chrX_data.tar.gz # 下载原始数据 |
解压后在当前目录下生成新文件夹chrX_data,里面包含如下文件:
drwxr-xr-x 3 xiuliliu staff 102 Jul 12 2016 genes
drwxr-xr-x 3 xiuliliu staff 102 Jan 14 2016 genome
-rw-r–r– 1 xiuliliu staff 337 Jan 14 2016 geuvadis_phenodata.csv
drwxr-xr-x 10 xiuliliu staff 340 Jan 14 2016 indexes
-rw-r–r– 1 xiuliliu staff 228 Jan 14 2016 mergelist.txt
drwxr-xr-x 26 xiuliliu staff 884 Jan 14 2016 samples
其中,samples中包含24个.fastq.gz文件,分为12对,从GBR和YRI两地各取6个样,男女各3个,构成基本的生物学重复。
-rw-r–r– 1 xiuliliu staff 91425269 Jan 14 2016 ERR188044_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 91314392 Jan 14 2016 ERR188044_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 87664981 Jan 14 2016 ERR188104_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 88268450 Jan 14 2016 ERR188104_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 112984506 Jan 14 2016 ERR188234_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 114271070 Jan 14 2016 ERR188234_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 61157734 Jan 14 2016 ERR188245_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 62378428 Jan 14 2016 ERR188245_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 67433106 Jan 14 2016 ERR188257_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 68213815 Jan 14 2016 ERR188257_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 39876761 Jan 14 2016 ERR188273_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 40639110 Jan 14 2016 ERR188273_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 91600737 Jan 14 2016 ERR188337_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 92210453 Jan 14 2016 ERR188337_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 66033878 Jan 14 2016 ERR188383_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 65623043 Jan 14 2016 ERR188383_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 90165491 Jan 14 2016 ERR188401_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 90548373 Jan 14 2016 ERR188401_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 57960187 Jan 14 2016 ERR188428_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 58159176 Jan 14 2016 ERR188428_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 73187016 Jan 14 2016 ERR188454_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 72904430 Jan 14 2016 ERR188454_chrX_2.fastq.gz
-rw-r–r– 1 xiuliliu staff 77647967 Jan 14 2016 ERR204916_chrX_1.fastq.gz
-rw-r–r– 1 xiuliliu staff 78167352 Jan 14 2016 ERR204916_chrX_2.fastq.gz
二、比对读段到基因组上 (Align the RNA-seq reads to the genome)
1 | Map the reads for each sample to the reference genome
1 | > hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1 chrX_data/samples/ERR204916_chrX_1.fastq.gz -2 chrX_data/samples/ERR204916_chrX_2.fastq.gz -S ERR204916_chrX.sam |
以ERR188044为例,比对结果如下:
1321477 reads; of these:
1321477 (100.00%) were paired; of these:
121769 (9.21%) aligned concordantly 0 times
1183443 (89.55%) aligned concordantly exactly 1 time
16265 (1.23%) aligned concordantly >1 times
121769 pairs aligned concordantly 0 times; of these:
4200 (3.45%) aligned discordantly 1 time
117569 pairs aligned 0 times concordantly or discordantly; of these:
235138 mates make up the pairs; of these:
119859 (50.97%) aligned 0 times
112782 (47.96%) aligned exactly 1 time
2497 (1.06%) aligned >1 times
95.46% overall alignment rate
比对完成后生成如下SAM文件:
-rw-r–r– 1 xiuliliu staff 774297504 May 1 22:25 ERR188044_chrX.sam
-rw-r–r– 1 xiuliliu staff 751836403 May 1 22:33 ERR188104_chrX.sam
-rw-r–r– 1 xiuliliu staff 917023342 May 1 22:36 ERR188234_chrX.sam
-rw-r–r– 1 xiuliliu staff 502043631 May 1 22:37 ERR188245_chrX.sam
-rw-r–r– 1 xiuliliu staff 558972026 May 1 22:39 ERR188257_chrX.sam
-rw-r–r– 1 xiuliliu staff 335808493 May 1 22:41 ERR188273_chrX.sam
-rw-r–r– 1 xiuliliu staff 748130535 May 1 22:43 ERR188337_chrX.sam
-rw-r–r– 1 xiuliliu staff 561738897 May 1 22:44 ERR188383_chrX.sam
-rw-r–r– 1 xiuliliu staff 769125833 May 1 22:46 ERR188401_chrX.sam
-rw-r–r– 1 xiuliliu staff 490343972 May 1 22:47 ERR188428_chrX.sam
-rw-r–r– 1 xiuliliu staff 611111154 May 1 22:49 ERR188454_chrX.sam
-rw-r–r– 1 xiuliliu staff 640234529 May 1 22:50 ERR204916_chrX.sam
2 | Sort and convert the SAM files to BAM
1 | samtools sort -@ 8 -o ERR188104_chrX.bam ERR188104_chrX.sam |
运行完成后,生成对应的BAM文件:
-rw-r–r– 1 xiuliliu staff 149690318 May 1 23:25 ERR188044_chrX.bam
-rw-r–r– 1 xiuliliu staff 144503638 May 1 23:26 ERR188104_chrX.bam
-rw-r–r– 1 xiuliliu staff 192550220 May 1 23:27 ERR188234_chrX.bam
-rw-r–r– 1 xiuliliu staff 105587796 May 1 23:28 ERR188245_chrX.bam
-rw-r–r– 1 xiuliliu staff 117630914 May 1 23:29 ERR188257_chrX.bam
-rw-r–r– 1 xiuliliu staff 69857742 May 1 23:30 ERR188273_chrX.bam
-rw-r–r– 1 xiuliliu staff 157532931 May 1 23:31 ERR188337_chrX.bam
-rw-r–r– 1 xiuliliu staff 108256114 May 1 23:32 ERR188383_chrX.bam
-rw-r–r– 1 xiuliliu staff 151150838 May 1 23:32 ERR188401_chrX.bam
-rw-r–r– 1 xiuliliu staff 97383432 May 1 23:33 ERR188428_chrX.bam
-rw-r–r– 1 xiuliliu staff 121850605 May 1 23:34 ERR188454_chrX.bam
-rw-r–r– 1 xiuliliu staff 131891473 May 1 23:34 ERR204916_chrX.bam
3 | Assemble transcripts for each sample
1 | conda install stringtie # 安装stringtie |
运行完成后,生成如下文件:
-rw-r–r– 1 xiuliliu staff 1911015 May 2 22:09 ERR188044_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1905249 May 2 22:12 ERR188104_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1914897 May 2 22:13 ERR188234_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1750782 May 2 22:14 ERR188245_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1705229 May 2 22:19 ERR188257_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1487570 May 2 22:19 ERR188273_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1928401 May 2 22:17 ERR188337_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1744763 May 2 22:20 ERR188383_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1936094 May 2 22:20 ERR188401_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1617807 May 2 22:21 ERR188428_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1773237 May 2 22:21 ERR188454_chrX.gtf
-rw-r–r– 1 xiuliliu staff 1818351 May 2 22:22 ERR204916_chrX.gtf
4 | Merge transcripts from all samples
1 | # [-p]:线程数;[-G]:注释文件;[-o]:输出目录 |
运行完成后,生成一个新的文件:
stringtie_merged.gtf
5 | Examine how the transcripts compare with the reference annotation
1 | conda install gffcompare # 安装gffcompare |
运行完成后,生成多个文件:
merged.annotated.gtf
merged.loci
merged.stats
merged.stringtie_merged.gtf.refmap
merged.stringtie_merged.gtf.tmap
merged.tracking
6 | Estimate transcript abundances and create table counts for Ballgown
1 | stringtie -e -B -p 8 -G stringtie_merged.gtf -o ballgown/ERR188044/ERR188044_chrX.gtf ERR188044_chrX.bam |
运行完成后,将生成ballgown文件夹,
drwxr-xr-x 8 xiuliliu staff 272 May 2 22:58 ERR188044
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:00 ERR188104
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:01 ERR188234
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:01 ERR188245
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:02 ERR188257
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:02 ERR188273
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:03 ERR188337
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:03 ERR188383
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:04 ERR188401
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:04 ERR188428
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:05 ERR188454
drwxr-xr-x 8 xiuliliu staff 272 May 2 23:06 ERR204916
以ERR188044为例,包含:
-rw-r–r– 1 xiuliliu staff 4737232 May 2 22:58 ERR188044_chrX.gtf
-rw-r–r– 1 xiuliliu staff 279338 May 2 22:58 e2t.ctab
-rw-r–r– 1 xiuliliu staff 767920 May 2 22:58 e_data.ctab
-rw-r–r– 1 xiuliliu staff 244338 May 2 22:58 i2t.ctab
-rw-r–r– 1 xiuliliu staff 358966 May 2 22:58 i_data.ctab
-rw-r–r– 1 xiuliliu staff 288682 May 2 22:58 t_data.ctab
三、差异分析(Differential Expression Analysis)
7 | Load relevant R packages
1 | > R |
8 | Load the phenotype data for the samples
chrX_data/geuvadis_phenodata.csv中包含样品的表型数据,行为样品,列为变量。1
> pheno_data = read.csv("chrX_data/geuvadis_phenodata.csv")
“ids” | “sex” | “population” |
---|---|---|
“ERR188044” | “male” | “YRI” |
“ERR188104” | “male” | “YRI” |
“ERR188234” | “female” | “YRI” |
“ERR188245” | “female” | “GBR” |
“ERR188257” | “male” | “GBR” |
“ERR188273” | “female” | “YRI” |
“ERR188337” | “female” | “GBR” |
“ERR188383” | “male” | “GBR” |
“ERR188401” | “male” | “GBR” |
“ERR188428” | “female” | “GBR” |
“ERR188454” | “male” | “YRI” |
“ERR204916” | “female” | “YRI” |
9 | Read in expression data
ballgown包含三个参数:
dataDir,数据存储目录,本例中命名为ballgown;
samplePattern,样本名称的特征模式,本例中为ERR;
pData,上一步加载的表型数据;
1 | > bg_chrX = ballgown(dataDir = "ballgown", samplePattern = "ERR", pData=pheno_data) |
10 | Filter to remove low-abundance genes
使用方差过滤掉低丰度的基因,即去掉所有样本中方差小于1的基因。
1 | > bg_chrX_filt = subset (bg_chrX, "rowVars(texpr(bg_chrX)) >1", genomesubset=TRUE) |
11 | Identify transcripts that show statistically significant differences between groups
识别组间有显著差异的转录本:在此特别说明,我们需要考虑由其他变量引起的表达变化。在本例中,有两个变量,即sex & population,在计算男女性别(sex)之间的差异时,需要考虑族群(population)这一变量对结果的影响,即需要修正由族群引起的表达差异。因此,需要使用stattest这个功能。
1 | > results_transcripts = stattest(bg_chrX_filt, feature="transcript", covariate="sex", adjustvars = c("population"), getFC=TRUE, meas="FPKM") |
输出如下:
feature | id | fc | pval | qval | |
---|---|---|---|---|---|
1 | transcript | 1 | 0.9705279 | 0.8702505 | 0.9680215 |
2 | transcript | 2 | 1.8315567 | 0.5824978 | 0.9194471 |
3 | transcript | 3 | 2.2376558 | 0.5410260 | 0.9174339 |
4 | transcript | 4 | 0.1745325 | 0.2063035 | 0.8959691 |
5 | transcript | 5 | 0.6220551 | 0.2836476 | 0.8997697 |
6 | transcript | 6 | 0.6956666 | 0.3957555 | 0.8997697 |
… | … | … | … | … | … |
2193 | transcript | 3444 | 1.5894619 | 0.5488017 | 0.9174339 |
2194 | transcript | 3445 | 1.3396594 | 0.8246823 | 0.9661891 |
2195 | transcript | 3446 | 0.4460239 | 0.5313140 | 0.9174339 |
2196 | transcript | 3447 | 3.7182648 | 0.2045574 | 0.8959691 |
2197 | transcript | 3448 | 0.5894432 | 0.5519984 | 0.9174339 |
2198 | transcript | 3449 | 0.9296388 | 0.8386784 | 0.9662358 |
我们看到,results_transcripts是一个2198x5的矩阵,即在男女两组间有显著差异的转录本共2198个。
12 | Identify genes that show statistically significant differences between groups
识别组间有显著差异的基因:同样,再次使用stattest命令,但要设置feature=”gene”,
1 | > results_genes = stattest(bg_chrX_filt, feature="gene", covariate="sex", adjustvars = c("population"), getFC=TRUE, meas="FPKM") |
输出如下:
feature | id | fc | pval | qval | |
---|---|---|---|---|---|
1 | gene | MSTRG.1 | 1.0842110 | 0.6894045 | 0.9108614 |
2 | gene | MSTRG.10 | 0.5255349 | 0.2155227 | 0.7052821 |
3 | gene | MSTRG.100 | 1.1078716 | 0.8361049 | 0.9714996 |
… | … | … | … | … | |
983 | gene | NR_110830 | 1.2138007 | 0.5460477 | 0.8687917 |
984 | gene | NR_131236 | 2.0266878 | 0.1630176 | 0.6591538 |
985 | gene | NR_131237 | 0.8019495 | 0.6388593 | 0.9074799 |
总计发现985个在男女两组间有显著差异的基因。
13 | Add gene names and gene IDs to the results_transcripts data frame
1 | > results_transcripts = data.frame (geneNames=ballgown::geneNames(bg_chrX_filt), geneIDs=ballgown::geneIDs(bg_chrX_filt), results_transcripts) |
输出如下:
geneNames | geneIDs | feature | id | fc | pval | qval | |
---|---|---|---|---|---|---|---|
1 | . | MSTRG.2 | transcript | 1 | 0.9705279 | 0.8702505 | 0.9680215 |
2 | PLCXD1 | MSTRG.2 | transcript | 2 | 1.8315567 | 0.5824978 | 0.9194471 |
3 | . | MSTRG.2 | transcript | 3 | 2.2376558 | 0.5410260 | 0.9174339 |
… | … | … | … | … | … | … | … |
3447 | . | MSTRG.1033 | transcript | 3447 | 3.7182648 | 0.2045574 | 0.8959691 |
3448 | . | MSTRG.1033 | transcript | 3448 | 0.5894432 | 0.5519984 | 0.9174339 |
3449 | DDX11L16 | MSTRG.1034 | transcript | 3449 | 0.9296388 | 0.8386784 | 0.9662358 |
14 | Sort the results from the smallest P value to the largest
1 | > results_transcripts = arrange(results_transcripts, pval) |
排序后的results_transcripts如下:
geneNames | geneIDs | feature | id | fc | pval | qval | |
---|---|---|---|---|---|---|---|
1 | . | MSTRG.503 | transcript | 1623 | 0.031022135 | 1.600243e-10 | 2.636450e-07 |
2 | . | MSTRG.503 | transcript | 1621 | 0.016352577 | 3.101146e-10 | 2.636450e-07 |
3 | XIST | MSTRG.503 | transcript | 1622 | 0.003107383 | 3.598430e-10 | 2.636450e-07 |
… | … | … | … | … | … | … | … |
2196 | ARMCX5 | MSTRG.650 | transcript | 1990 | 1.0009910 | 0.9991690 | 0.9994574 |
2197 | MAP7D3 | MSTRG.888 | transcript | 2848 | 1.0005197 | 0.9991786 | 0.9994574 |
2198 | FHL1 | MSTRG.887 | transcript | 2844 | 0.9993523 | 0.9994574 | 0.9994574 |
排序后的results_genes如下:
feature | id | fc | pval | qval | |
---|---|---|---|---|---|
1 | gene | MSTRG.503 | 0.002374652 | 2.081024e-11 | 2.049809e-08 |
2 | gene | MSTRG.502 | 0.082721440 | 7.853611e-06 | 2.788929e-03 |
3 | gene | MSTRG.133 | 3.103423470 | 1.032255e-05 | 2.788929e-03 |
… | … | … | … | … | … |
983 | gene | MSTRG.388 | 0.9989017 | 0.9977412 | 0.9996474 |
984 | gene | MSTRG.86 | 1.0003031 | 0.9995072 | 0.9996474 |
985 | gene | MSTRG.933 | 1.0002451 | 0.9996474 | 0.9996474 |
15 | Write the results to a csv file that can be shared and distributed
1 | > write.csv(results_transcripts, "chrX_transcripts_results.csv", row.names=FALSE) |
16 | Identify transcripts and genes with a q value <0.05
subset(x, …),返回向量、矩阵或数据框中满足条件的子集,x代表被子集的对象,…代表补充条件;
1 | > subset (results_transcripts, results_transcripts$qval < 0.05) # results_transcripts$qval,代表results_transcripts数据框中的变量qval |
geneNames | geneIDs | feature | id | fc | pval | qval | |
---|---|---|---|---|---|---|---|
1 | . | MSTRG.503 | transcript | 1623 | 0.031022135 | 1.600243e-10 | 2.636450e-07 |
2 | . | MSTRG.503 | transcript | 1621 | 0.016352577 | 3.101146e-10 | 2.636450e-07 |
3 | XIST | MSTRG.503 | transcript | 1622 | 0.003107383 | 3.598430e-10 | 2.636450e-07 |
4 | . | MSTRG.503 | transcript | 1624 | 0.028430569 | 4.552122e-08 | 2.501391e-05 |
5 | TSIX | MSTRG.502 | transcript | 1620 | 0.080804059 | 2.230664e-06 | 9.806001e-04 |
6 | . | MSTRG.585 | transcript | 1812 | 7.403215751 | 1.083185e-05 | 3.968068e-03 |
7 | . | MSTRG.734 | transcript | 2296 | 0.285432112 | 4.293753e-05 | 1.236355e-02 |
8 | . | MSTRG.589 | transcript | 1816 | 9.079691942 | 4.499928e-05 | 1.236355e-02 |
9 | . | MSTRG.133 | transcript | 415 | 3.282982493 | 9.861143e-05 | 2.260472e-02 |
10 | KDM6A | MSTRG.242 | transcript | 721 | 0.056618320 | 1.028422e-04 | 2.260472e-02 |
11 | PNPLA4 | MSTRG.58 | transcript | 180 | 0.592766066 | 1.837704e-04 | 3.672066e-02 |
feature | id | fc | pval | qval | |
---|---|---|---|---|---|
1 | gene | MSTRG.503 | 0.002374652 | 2.081024e-11 | 2.049809e-08 |
2 | gene | MSTRG.502 | 0.082721440 | 7.853611e-06 | 2.788929e-03 |
3 | gene | MSTRG.133 | 3.103423470 | 1.032255e-05 | 2.788929e-03 |
4 | gene | MSTRG.585 | 7.275640247 | 1.132560e-05 | 2.788929e-03 |
5 | gene | MSTRG.734 | 0.274009446 | 1.719431e-05 | 3.387279e-03 |
6 | gene | MSTRG.589 | 9.144287534 | 4.825828e-05 | 7.922401e-03 |
7 | gene | MSTRG.491 | 0.638039877 | 9.299543e-05 | 1.308579e-02 |
8 | gene | MSTRG.58 | 0.599529415 | 1.561007e-04 | 1.921990e-02 |
9 | gene | MSTRG.355 | 0.628725310 | 2.718713e-04 | 2.975480e-02 |
10 | gene | MSTRG.590 | 7.808856957 | 3.827458e-04 | 3.770046e-02 |
11 | gene | MSTRG.213 | 1.409064890 | 4.535347e-04 | 4.061197e-02 |
四、绘图(Data visualization)
17 | Make the plots pretty
1 | > tropical = c('darkorange', 'dodgerblue', 'hotpink', 'limegreen', 'yellow') |
18 | Show the distribution of gene abundances across samples, colored by sex
1 | > fpkm = texpr(bg_chrX, meas="FPKM") # texpr(x, meas = "FPKM"),从ballgown中抽取转录本的表达值 |
fpkm如下:
FPKM.ERR188044 | FPKM.ERR188104 | FPKM.ERR188234 | FPKM.ERR188245 | FPKM.ERR188257 | FPKM.ERR188273 | FPKM.ERR188337 | FPKM.ERR188383 | FPKM.ERR188401 | FPKM.ERR188428 | FPKM.ERR188454 | FPKM.ERR204916 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.658196 | 4.287118 | 5.348706 | 3.878832 | 4.730237 | 4.636182 | 4.997749 | 4.442006 | 4.861568 | 4.700369 | 4.872868 | 4.410593 |
2 | 0.000000 | 0.000000 | 4.849373 | 0.000000 | 5.523984 | 0.000000 | 0.000000 | 0.000000 | 4.747225 | 0.000000 | 0.000000 | 0.000000 |
3 | 4.750170 | 0.000000 | 5.121661 | 0.000000 | 0.000000 | 0.000000 | 4.345735 | 5.597809 | 5.524776 | 5.223788 | 5.967379 | 0.000000 |
… | … | … | … | … | … | … | … | … | … | … | … | … |
3447 | 0.000000 | 0.000000 | 0.0000000 | 0.000000 | 7.0420943 | 0.0000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000000 | 3.699866 | 0.000000 |
3448 | 0.000000 | 0.000000 | 0.0000000 | 0.000000 | 5.2154062 | 0.0000000 | 6.646315 | 0.000000 | 0.000000 | 0.0000000 | 0.000000 | 0.000000 |
3449 | 1.007382 | 1.979173 | 1.7364404 | 1.343544 | 0.6354767 | 0.0000000 | 1.047157 | 1.739338 | 0.000000 | 0.0000000 | 0.000000 | 0.000000 |
19 | Make plots of individual transcripts across samples
1 | > ballgown::transcriptNames(bg_chrX)[9] # 第九个转录本的名称 |
20 | Plot the structure and expression levels in a sample of all transcripts that share the same gene locus
1 | > plotTranscripts(ballgown::geneIDs(bg_chrX)[1622], bg_chrX, main=c('Gene XIST in sample ERR188234'), sample=c('ERR188234')) |
21 | Plot the average expression levels for all transcripts of a gene within different groups
1 | > plotMeans ('MSTRG.56', bg_chrX_filt, groupvar="sex", legend=FALSE) |