在R中使用dnorm()作正态分布曲线

在R中,dnorm()是正态分布的概率密度函数,d代表density,norm代表正态分布,返回给定x在标准正态分布下的概率密度。

对于一个给定的正态分布,X ∼ N(μ,σ2),μ代表均值,σ2代表方差,dnorm()可以计算给定x下的概率密度,即P(X<=x|μ=a,σ=b),比如,对于标准正态分布 X ∼ N(0,1),要计算x=1时的概率密度,即dnorm(1)=P(X<=1|μ=0,σ=1)

1
2
3
4
> dnorm(1) # 默认为标准正态分布,故亦可以写作下面这种形式
[1] 0.2419707
> dnorm(1,mean=0,sd=1)
[1] 0.2419707

根据dnorm()的性质,我们可以利用dnorm()来绘制正态分布曲线。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
> x <- rnorm(100)
> x
[1] 0.067624027 0.446922747 -0.779610273 1.019910795 -0.611558691 -0.042208614 1.057542821
[8] 0.168769225 0.292759062 0.069769967 -1.884478653 0.210965341 0.487999663 0.079415785
[15] 0.547819110 1.218320307 -0.829277733 -0.180677502 -0.722302587 -0.275027962 1.147344053
[22] 0.057776822 0.620030502 -0.006237543 0.150433226 1.259527763 -0.828779833 -1.581627780
[29] -0.291715425 -0.275497338 -0.531884989 -0.022351625 -0.213368332 -0.661274484 1.052272355
[36] -1.491285952 -0.490500385 -0.289660378 -1.223280167 -0.407513962 -0.951917561 0.880820238
[43] 0.193889773 -1.401977549 -0.571268441 -0.680519505 -0.593670209 1.149960529 -0.366887812
[50] -1.401057013 0.520541718 -1.871404951 -1.529649961 0.380110232 -0.646800728 -1.745816661
[57] -1.658797701 -0.809181810 -1.228480576 -0.228532084 1.529535839 0.064914455 0.243817469
[64] 0.623980927 -1.621383762 -1.790768314 0.816892971 -0.278317894 -0.090169109 0.350612752
[71] 2.134799802 -0.105936765 -0.606534781 -1.037662539 -0.956454603 -1.271927292 -0.787623941
[78] -0.001952851 -0.906800210 2.335462375 -0.778546226 0.520102904 -1.076871213 2.310164950
[85] 0.001740659 -0.808784690 0.750435109 -0.453002059 2.304120907 0.192156923 0.659194960
[92] -0.807322096 -0.976952123 -0.392610629 -1.173103468 2.769663266 -0.085446868 2.340928468
[99] 0.309876876 -1.262045807
> x <- x[order(x)]
> x
[1] -1.884478653 -1.871404951 -1.790768314 -1.745816661 -1.658797701 -1.621383762 -1.581627780
[8] -1.529649961 -1.491285952 -1.401977549 -1.401057013 -1.271927292 -1.262045807 -1.228480576
[15] -1.223280167 -1.173103468 -1.076871213 -1.037662539 -0.976952123 -0.956454603 -0.951917561
[22] -0.906800210 -0.829277733 -0.828779833 -0.809181810 -0.808784690 -0.807322096 -0.787623941
[29] -0.779610273 -0.778546226 -0.722302587 -0.680519505 -0.661274484 -0.646800728 -0.611558691
[36] -0.606534781 -0.593670209 -0.571268441 -0.531884989 -0.490500385 -0.453002059 -0.407513962
[43] -0.392610629 -0.366887812 -0.291715425 -0.289660378 -0.278317894 -0.275497338 -0.275027962
[50] -0.228532084 -0.213368332 -0.180677502 -0.105936765 -0.090169109 -0.085446868 -0.042208614
[57] -0.022351625 -0.006237543 -0.001952851 0.001740659 0.057776822 0.064914455 0.067624027
[64] 0.069769967 0.079415785 0.150433226 0.168769225 0.192156923 0.193889773 0.210965341
[71] 0.243817469 0.292759062 0.309876876 0.350612752 0.380110232 0.446922747 0.487999663
[78] 0.520102904 0.520541718 0.547819110 0.620030502 0.623980927 0.659194960 0.750435109
[85] 0.816892971 0.880820238 1.019910795 1.052272355 1.057542821 1.147344053 1.149960529
[92] 1.218320307 1.259527763 1.529535839 2.134799802 2.304120907 2.310164950 2.335462375
[99] 2.340928468 2.769663266
> y <- dnorm(x)
> y
[1] 0.06757154 0.06925106 0.08026962 0.08691050 0.10078725 0.10716547 0.11421053 0.12382908 0.13121666
[10] 0.14931322 0.14950598 0.17766810 0.17990644 0.18758545 0.18878514 0.20048328 0.22340604 0.23286176
[19] 0.24754664 0.25250071 0.25359620 0.26445562 0.28286393 0.28298071 0.28755931 0.28765171 0.28799187
[28] 0.29255158 0.29439449 0.29463863 0.30734049 0.31648104 0.32059376 0.32364303 0.33089951 0.33191354
[37] 0.33448585 0.33887894 0.34632094 0.35372559 0.36003862 0.36715457 0.36935018 0.37297575 0.38232376
[46] 0.38255222 0.38378647 0.38408633 0.38413596 0.38865936 0.38996373 0.39248353 0.39670996 0.39732378
[55] 0.39748856 0.39858707 0.39884264 0.39893452 0.39894152 0.39894168 0.39827697 0.39810262 0.39803114
[64] 0.39797247 0.39768622 0.39445366 0.39330100 0.39164452 0.39151355 0.39016259 0.38725882 0.38220718
[73] 0.38024086 0.37515981 0.37113833 0.36102484 0.35415863 0.34847386 0.34839431 0.34335464 0.32917774
[82] 0.32836988 0.32103423 0.30103915 0.28576211 0.27066844 0.23715353 0.22933371 0.22806219 0.20656550
[91] 0.20594562 0.18993171 0.18047850 0.12385070 0.04085919 0.02805958 0.02767102 0.02609189 0.02576054
[100] 0.00861323

plot(x,y,type="l")

  • 本文作者:括囊无誉
  • 本文链接: R/R_dnorm/
  • 版权声明: 本博客所有文章均为原创作品,转载请注明出处!
------ 本文结束 ------
坚持原创文章分享,您的支持将鼓励我继续创作!